PHOTOREACTION OF N-(ω -INDOL-3-YLALKYL)PHTHALIMIDES INTRAMOLECULAR OXETANE FORMATION OF THE AROMATIC IMIDE SYSTEM 1

Minoru Machida* and Haruko Takechi Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen University, Ishikari-Tobetsu, Hokkaido, 061-02

> Yuıchı Kanaoka* Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

 $\frac{Summary}{(\frac{3a}{2})}$ Photoreaction of N-(ω -indol-3-ylalkyl)phthalimides (<u>la</u> and <u>lc</u>) gave oxeto[2,3-b]indoles (<u>3a</u> and <u>3c</u>), the first example of oxetane formation of the aromatic imide carbonyl in the Paterno-Buchi reaction

There are remarkable differences between the photochemistry of the alicyclic imides and the aromatic cyclic imides (i e , phthalimides)² In photoreactions with alkenes, aliphatic cyclic imides undergo efficient inter- or intra-molecular Paterno-Buchi reactions,^{2b} whereas phthalimides undergo photoadditions^{2b} and photocyclizations,³ not oxetane formation Recently possible in-volvement of the Paterno-Buchi reaction in phthalimide systems has been reported,⁴ but the Paterno-Buchi product (oxetane) was not isolated. We now wish to report the first unambiguous example of the oxetane formation in the phthalimide system

In a typical run, a solution of <u>la</u> in acetone (10 mM) was irradiated with a Pyrex-filtered 500 W high-pressure mercury lamp in a nitrogen atmosphere for 12 5 h Structures of the products were assigned on the basis of analytical and spectral data ⁵ As listed in Table 1, compounds <u>la,c</u> underwent cycloaddition to give oxetane <u>3a,c</u>, while <u>lb</u> and <u>ld</u> gave the ring opening products <u>6b,d</u> On treatment with methanolic hydrochloric acid, the oxetane <u>3a</u> was quantitatively converted to spiro compound <u>4</u> In fact, upon irradiation of a N-trifluoroacetyl derivative <u>2</u>, a similar spiro diol <u>5</u> was isolated in a moderate yield Since the imide oxetane <u>3a</u> was very sensitive to solvolysis and lost even on silica gel treatment, products <u>6b,d</u> are probably generated from the

 $\frac{1a-d}{2} \quad \begin{array}{l} \text{R=CH}_3\text{CO}, \text{ n=2-5} \\ \text{R=CF}_3\text{CO}, \text{ n=2} \end{array}$

 $\frac{3a}{3c} \quad R=CH_3CO, n=2$ $\frac{3c}{R}=CH_3CO, n=4$

 $\frac{4}{5} \quad R^{1} = CH_{3}CO, \quad R^{2} = CH_{3}$ $\frac{4}{5} \quad R^{1} = CF_{3}CO, \quad R^{2} = H$

 $\begin{array}{cccc} \underline{6b-1} & R=CHO, & n=3\\ \underline{6b-n} & R=H, & n=3\\ \underline{6d-1} & R=CHO, & n=5\\ \underline{6d-n} & R=H, & n=5 \end{array}$

initially formed oxetane by hydrolysis followed by ring opening ($3 \rightarrow$ spiro-diol such as 4, $R^2=H$ $\rightarrow 6$).

From many studies by Mazzocchi et al ,^{2,4} Maruyama et al ,^{2,3a,b} and our group,^{2,3b-d} it has become increasingly clear that the characteristic feature of the photoadditions of phthalimides with alkenes is associated with electron transfer process Mazzocchi discussed the competition of the addition (k_{CN} , addition to the C(O)N bond) and electron transfer (k_{ET}) in terms of the ionization potentials 2b,4 The occurrence of the Paterno-Büchi reaction (kpg) in the phthalimide photoaddition has now been verified by trapping the imide-oxetane using the N-acylindole group, a good Paterno-Buchi acceptor ^b Thus the general aspect of the photoaddition of the aromatic cyclic Imides with alkenes may now be summarized as shown in Scheme 1.

Table Photoproducts from 1 and 2	Table	1 Photo	products	from	1	and	2.	
------------------------------------	-------	---------	----------	------	---	-----	----	--

Substrate	e n	mp °C	Time (h)	Product	mp °C	Yıeld (%)	Recovery of 1 (%)
<u>1a</u>	2	197-198	12 5	3a	181 - 182	27	
			9	4*	193 - 194.5	38	32
<u>16</u>	3	136 5-137	7	6b-1	161 - 162	11	20
ł				6b-π	238 5~240	13	
<u>lc</u>	4	109-110.5	6	3c	187.5-188 5	69	19
<u>1d</u>	5	87 - 89	4	6d-1	200 - 200 5	28	19
				6d-11	271 5-272 5	6	
<u>2</u>	2	172-172.5	7	5	178 - 179	52	

After irradiation the photolysate was treated with MeOH-HCl

References and Notes

- 1) a) Photochemistry of the Phthalımıde System. 32. Part 31. M. Wada, H. Nakaı K. Aoe, K. Kotera, Y Sato, Y Hatanaka, and Y Kanaoka, submitted, b) Photoinduced Reactions 65 Part 64, see ref la).
- 2) a) Y Kanaoka, Accounts Chem. Res., 11, 407 (1978); b) P.H Mazzocchi, "Organic Photo-
- chemistry", Vol 5, A Padwa, Ed., Marcel Dekker, New York, 1981, p 421
 3) a) K. Maruyama, Y Kubo, M. Machida, K. Oda, Y Kanaoka, and K Fukuyama, J Org. Chem., 43, 2303 (1978), b) M Machida, K. Oda, K. Maruyama, Y. Kubo, and Y. Kanaoka, <u>Heterocycles</u>, 14, 779 (1982), c) M Machida, K Oda, and Y Kanaoka, <u>ibid</u>, 17, 425 (1982), d) Idem <u>ibid</u>, 18, 211 (1982).
- 4) P.H. Mazzocchi, S. Minamikawa, P. Wilson, M. Bowen, and N. Narian, J. Org. Chem., 46, 4846
- (1981) 5) a) $3a^{-1}H-NMR$, 6.40 ppm (a methine* proton adjacent to the nitrogen and oxygen atoms), 5b 13 C-NMR, 62 9 (s), 109.1 (s), and 92.4 (d) (two quaternary carbons and a methine carbon* on the oxetane ring) <u>3c</u> ¹H-NMR, 6 65 (s) ppm (a methine* proton), ^{5D} ¹³C-NMR, 63 9 (s), 103.3 (s), and 90 5 (d) ppm (two quaternary carbons and a methine carbon* on the oxetane ring), b) The chemical shift value is close to that (6.20 ppm) of the methine proton adjacent to the nitrogen and oxygen atoms in oxeto[2,3-b]indole system 6
- 6) D.R. Julian and G.D. Tringham, J. Chem. Soc. Chem. Comm., 1973, 13